

Possibilities for monitoring product quality and adjustment of drying conditions

Christian Kopp, Michael Bantle

Affiliation: SINTEF Energi AS + Thermal energy

Trondheim (Norway)

Christian.Kopp@Sintef.no Michael.Bantle@Sintef.no

Initial Situation

Possible settings

- Set temperature
- Set air velocity
- Set glycol temperature
- Record of Temperature
- Record of relative Humidity
- Record of Air Velocity

Modifications

New sensors

- Scale (drying kinetics)
- Pyrometer (surface temperature)
- Camera system with illumination (color alternation, shrinkage and deformation)

Modifications

New features

- Graphical user interface with control system
- Regulation of T, RH and Air velocity
- Continuous data acquisition
- No interruption of the drying process
- Analyse of optical parameters
- Own programmable drying process conditions

Experiments setup

Setup

- Apple slices 5mm thickness
- One underneath the pyrometer
- Each test series at least 3x
- 4 Test series in the middle of the drying chamber

Test name	Temp. dry air	Rel. humidity	Air velocity
T20_RH60	20 GradC	60%	1,5m/s
T20_RH40	20 GradC	40%	1,5m/s
T20_RH25	20 GradC	25%	1,5m/s
T40_RH25	40 GradC	25%	1,5m/s

Results drying kinetics

Moisture Ratio

- Drying matter determined with vacuum freeze drying
- Equilibrium Moisture Content determined with climate chamber (one week of drying)

Results drying kinetics

Effective Diffusivity ^[1]

	D _{eff} [m²/s]
T20_RH60	2,7E-10
T20_RH40	3,6E-10
T20_RH25	4,1E-10
T40_RH25	8,9E-10

$$D_{eff} = -\left(\frac{4(\frac{thickness}{2})^2}{\pi^2}\right) * (slope of line)$$

Results drying experiments

Surface Temperature

- One apple slice underneath the pyrometer
- Average of at least 3 apple slices
- Warm up at the beginning (stored at 8°C in the fridge)
- Linear increase with MR

Optical parameters (shrinkage and deformation)

Measuring Principles

- Analyzed with Java Tool and OpenCV^[2]
- Shrinkage by $\frac{A_{actual}}{A_{t0}}$
- Deformation by $\frac{A_{actual}}{A_{ref}}$
- A_{ref} is the minimum reference shape

Demo Video Top View(30sec) Demo Video Sidelong View (30sec)

Top view, circle as reference shape

Sidelong view, rectangle as reference shape

Shrinkage Top View

- Similar shrinkage at 20°C and RH25%, RH40%
- Shrinkage at 40°C much faster
- Similar magnitude of shrinkage

Shrinkage Top View

- different shrinking states
- Highest shrinkage rate in state II
- Ca. 90% of drying time is state II

Deformation Side View

- Similar deformation at 20°C
- Strong fluctuation In deformation magnitude

<u>Demo Video Deformation Side View</u> (30sec)

Optical Parameters (color alternation)

Measuring Principles

- Analyzed with Java Tool and OpenCV
- Readout and average of RGB values ۰ for each apple slice and each image
- Conversion to CIE-L*a*b* color space ٠ and Browning Index^[3]

Index

Recognized slices

Color CIE-L value (lightness)

- T20_RH40 and T20_RH25 similar ۲
- Minimum after ca. 3-4h

Fresh cut

ш **Enzymatic Browning** + dried center (bright)

+ wet center (dark)

II

Color CIE-a and CIE-b value

• Biggest alternation within the first few hours

Color Browning Index

- Increases with humidity
- Minimum results from the CIE-L value
- Buera et al. ^[4]

$$BI = \frac{(x_{D65} - 0.32)}{0.162} * 100$$

Color alternation rate

- All color alternation happened within the first 2-3 hours
- The drying process had no influence on the color change

Conclusion

- Apples were stored about 3 months → no exclude of storing influence
- Shape recognition works very precise and reliable (not only apples)
- Color measurement requires a very good image quality (Illumination conditions, camera settings, black level, white balance, color spaces, file format etc...)
- Optical analysis direct in LabVIEW → react on optical changes "on the fly"
- Smart drying programs with focus on product quality and/or energy aspects
- Al could be used to recognize drying states (e.g. if diffusion is main transport process then decrease temperature

Outline 10: Improved drying strategies – Concept for Enthalpy controlled drying

Author(s) Christian Kopp, Michael Bantle

Affiliation: SINTEF Energi AS + Thermal energy

Trondheim (Norway)

Christian.Kopp@Sintef.no Michael.Bantle@Sintef.no

Concept of enthalpy controlled drying

Author(s) Christian Kopp, Michael Bantle

Affiliation: SINTEF Energi AS + Thermal energy

Trondheim (Norway)

Christian.Kopp@Sintef.no Michael.Bantle@Sintef.no

Regulations

- Constant Surface Temp.
- No humidity regulation yet
- Fluctuations due to sensor uncertainties

12:00

Time [hh:mm]

— TempAir — TempSurface

16:00

20:00

-RH%

Temperatures / relative humidities

35

30

25

10

5

0

0:00

4:00

8:00

24:00

20

Weight loss

• Faster drying in the beginning due to higher temperature

Weight loss

— AirTemp_contrl. — SurfTemp_contrl.

Shrinkage Top View

- Results: average of 8 apple slices each
- Similar shrinkage progression

-AirTemp_contrl. ---SurfTemp_contrl.

Browning Index

- average of 8 apple slices
- RGB \rightarrow XYZ \rightarrow x = X/(X+Y+Z) BI = $\frac{(x_{D65}-0.32)}{0.162}$ * 100

— AirTemp_contrl. — SurfaceTemp_contrl.

Conclusion

- Improvements of the regulations
- More experiments
- Accelerate drying process
- No product damaging through exceeded surface temperature
- Positive influence on Vitamin C and color alternation [Chou and Chua 2003]
- Useful for sensitive drying products

References

- 1. BEIGI, M., Energy efficiency and moisture diffusivity of apple slices during convective drying. Food Science and Technology, 2016. 36: p. 145-150.
- 2. Bradski, G., The OpenCV Library, Dr. Dobb's Journal of Software Tools, 2000. Opencv.org
- 3. al., B.e., Definition of colour in the non enzymatic browning process. Die farbe, 1986. 32: p. 318-322.
- 4. Hirschler, R., Whiteness, Yellowness and Browning in Food Colorimetry, in Color in Food: Technological and Psychophysical Aspects, M.d.P. Buera, Editor. 2016.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.