Module 2.2

Quality and safety indicators for fresh and frozen beef, conventional versus organic

Carmen Georgeta NICOLAE

University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Animal Products Engineering and Administration

Bucharest, Romania

carmennicolae19@yahoo.com

Introduction Representative breeds of domestic cattle for meat The carcass pieces of the cattle The quality of beef The chemical composition of meat The beef safety indicators The organoleptic characteristics of beef The sensory analysis of beef Appreciation of beef sanitation by sensory characteristics The physico-chemical methods for assessing beef quality Food safety regulation +/- of beef in human nutrition Conventional versus organic References

Learning Outcomes

- In the context of supplying high-quality food for human consumption, the beef, sources of "noble protein", play an important role.
- The module "Quality and safety indicators for fresh and frozen beef, conventional versus organic" provide information about cattle, chemical composition and sensorial characteristics of beef, physicochemical analyzes, specific legislation.
- The skills acquired relate to the identification of beef quality, and the recognition of meat suitable for human consumption.

Introduction

Numerous studies and archaeological discoveries have revealed that man has consumed meat for at least 1.5 million years. Moreover, it seems that the survival and evolution of the human species over time have depended on regular consumption of meat.

Meat is an important source of proteins, lipids, minerals and vitamins indispensable to the life and activity of the human body.

One of the meat consumed with pleasure by human is beef. It is important for beef producers and traders to control the quality and sensory characteristics (sensitivity, aroma, juices and color) of the beef to meet consumer preferences. The sensory quality of meat depends not only on the factors of production race, genotype, age, diet, growth path or slaughter, but also technological factors - slaughter conditions, aging, cooking.

Representative breeds of domestic cattle for meat

> Aberdeen Angus

Hereford

Shorthorn

> Charolaise

Representative breeds of domestic cattle for meat

Limousine

> Blonde d'Aquitaine

> Blanc-Bleu Belge

> Chianina

Representative breeds of domestic cattle for meat

> Marchigiana

> Romagnola

> Piedmontese

> Podolica

The carcass pieces of the cattle

The quality of beef

The quality of beef depends on the ratio between the components: the muscles, the reserve fat and the supporting tissues. The quality is better as the percentage of muscle is higher and supporting tissue is lower.

Chemical composition of muscle tissue

Water	72 – 75 %
Proteins	18 – 22 %
Lipids	0.5 – 3.5 %
Minerals	0.8 - 1%

Muscle tissue proteins

Meat proteins are particularly important, falling into the high biological protein class, for their full content in essential amino acids and for the ratio they are found in.

Depending on the location, the muscle tissue proteins are divided into three main classes:

> Sarcoplasmic proteins are found in sarcoplasm, accounting for 30-35% of all muscle tissue proteins;

> Myofibrillary proteins are 52-56% and are localized in miofibrils. It contributes at least 70% to the nutritional value of the meat and has a high content of essential amino acids;

> The stromal proteins represent 10% and play an important role in determining the texture of the meat.

In order for the human organism to synthesize proteins, it needs 20 amino acids, where 8 are essential amino acids (they can not be synthesized by the human body and must be brought into proteins from animal and plant products).

The amino acid composition of beef (it is reported at 100 g)

Indicator	Beef muscle tissue
Water, %	76,8
Protein, %	26,80
Transformation coefficient	6,25
Total essential amino acids, mg, of	8003
which:	8695
• Valine	1148
• Isoleucine	939
• Leucine	1624
• Lisine	1747
Methionine	588
• Treonine	875
• Tryptophan	373
Phenilalanine	904
Total non-essential amino acids,	12967
mg, of which:	12907
• Alanine	1365
 Argynine 	1296
 Asparaginic acid 	2326
Hystidine	769
• Glycine	878
 Glutamic acid 	3609
• Oxyproline	58
Proline	658
• Serine	904
• Tyrosine	800
• Cysteine	310
Total amino acids	21060

Muscle tissue lipids

Fat is the most variable component of meat, the proportion being directly influenced by species, age, race, sex, and animal's condition. Muscle fat ensures the flavor of meat.

Muscle tissue lipids are inside the muscle fibers or accompany connective tissues that form an integral part of muscle tissue. Lipids in muscle fibers have an energetic and plastic role.

The biological value of lipids is closely correlated with their saturated fatty acid content.

Lipid content of total muscle tissue (dorsal muscle, pulp) g / 100 g

	Indicator	tissue	- Ch. and
	Total lipids	2.50	The All States
	Triglycerides	1.70	The Designation
	Phospholipids	0.70	
CARGE IN THE OWNER	Cholesterol	0.06	A DESCRIPTION OF
	Total fat acids		
19 10 1 C 1 C 1 C 1	Saturated	2.29	C AND AND AND
	C14:0 (myristic)	1.11	
	C15:0 (pentadecanoic)	0.06	And I wanted and the second
F STATES	C16:0(palmitic)	0.01	A DECK DECK DECK DECK DECK DECK DECK DECK
THE REAL PROPERTY OF	C17:0 (margaric)	0.65	and the second states of the s
	C18:0(stearic)	0.02	CONTRACTOR OF THE OWNER OF THE OWNER
	Monounsaturated	0.37	A DESCRIPTION OF THE OWNER.
A DESCRIPTION OF THE PARTY OF T	C14:1 (miristoleic)	1.05	The second s
and the second se	C16:1 (palmitoleic)	0.02	And the second second
AS MARTINE IN	C18:1 (oleic)	0.08	and the second second
All Andrews	Polyunsaturated	0.30	Reph.
	C18:2(linoleic)	0.13	A A A A A A A A A A A A A A A A A A A
A CONTRACTOR OF	C18:3 (linolenic)	0.09	A State of the second
CONTRACTOR OF STREET,	C20:4 (arachidonic)	0.02	ALC: ALC: ALC: ALC: ALC: ALC: ALC: ALC:

Muscle tissue mineral substances

The mineral content of beef

		R	
The mineral substances muscular rigidity, water h of the meat, as well as some glycolithic and protect	interfere olding cap the activition olytic enzyr	with bacity ty of nes.	

Indicator	Beef	
Ash, %	1.0	200
Potassium	355.0	
Calcium	10.2	
Magnesium	22.0	
Sodium	73.0	
Sulphur	230.0	15
Phosphor	188.0	
Chlorine	59.0	
Iron	2900.0	33
Iodine	7.2	23
Cobalt	7.0	13.2
Manganese	35.0	
Copper	182.0	1
Molibdenum	11.60	
Nickel	8.6	
Tin	75.7	
Fluorine	63.0	
Chlorine	8.2	
Zinc	3240.0	

Muscle tissue vitamins

The meat is an important source of B vitamins. In ruminants, B vitamins can be synthesized by intestinal microflora, even if they are not found in feed.

The beef is one of the most important source of nicotine-amide (4-10 mg%) in food and it provides significant quantities of riboflavin and pyridoxine.

CORE organic

The vitamin content of beef (at 100g comestibil part)

Indicator	Beef
B ₆ , mg	0.42
B ₁₂ , μg	3.00
Biotin, µg	3.50
Niacin, mg	5.40
Pantothenic acid, mg	0.60
Riboflavin, mg	0.20
Thiamin, mg	0.10
Folate, µg	9.60

Quality assessment is done through a series of organoleptic, physicochemical, microbiological examinations on representative samples of the analyzed lot. Laboratory analyzes are performed to assess the product integrity, freshness and sanitation.

The sensory examination of the meat must be carried out in natural light or in artificial light that does not change color, in rooms without foreign smells, at a temperature of about 20° C.

The organoleptic characteristics of beef

Thermal	Dry and chilled	Frozen	
state		as such	after thawing
Appearance	on the surface, dry film; in the section, slightly moist; glossy, elastic and strong tendons, glossy joints; clear liquid:	compact block, sometimes covered with a thin layer of fine crystals, similar to snow crystals	the surface of wet meat; sometimes it may have a dry film; in the section; smooth and damp, pressing with the finger expresses relatively easy onalescent juice:
	connective tissue white-pearly and elastic; to chilled meat, touching with finger cold feeling without sticking		non-glossy connective tissue with reduced elasticity
Color	on the surface pink to red colored film; in section characteristic color	at surface normal color with more vivid shade, sometimes darker; when touching with a hot knife or finger, a red-and-white patch appears	on the surface, color from pink to dark red; connective tissue and flesh interfascicular fat of red color; red, opalescent meat juice

The organoleptic characteristics of beef

Thermal state	Dry and chilled	Frozen	
		as such	after thawing
Consistency	firm and elastic, both on the surface and in the section the marks that are formed by pressing your finger come back quickly; meat juice is obtained hard and is clear	loud; by striking with hard objects, gives clear sound	low elasticity; fingerprint traces return hard and incomplete
Smell	pleasant, characteristic	no smell	pleasant, characteristic
Fat characteristics	white, pink-white fat; soft; at friction, greasy sensation	hard consistency; characteristic color	consistency slightly diminished; the color of interfascicular fat with reddish shade

The sensory analysis of beef

Characteristics	Chilled and dry meat	Frozen meat	Thawed meat
Appearance	The general appearance of the	Examine whether the meat	The general appearance of the
	meat is observed: muscle,	block is compact. Examine	meat is observed. The
	connective tissue, tendons,	the ice layer and appreciate	appearance of muscle masses,
	synovial fluid and periosteum. It is	surface integrity and	subcutaneous connective tissue,
	examined the section surfaces of	superficial dehydration.	tendons, synovial fluid, and
	the muscles cut in the carcass		periosteum are appreciated.
	processing. Humidity is visually		Examine the section surfaces of
	appraised by palpation and by		the muscles cut in the case
	means of a filter paper applied to		processing.
	the surface of the meat.		The appearance of the meat
			juice is appreciated.
Color	The color is observed on the	Observe the color on the	The color of the meat is observed
	outside and in the section. It is	outside and at the point of	in the outside and in the section,
	appreciated if the color is	contact with the hot knife or	the connective tissue and the
	characteristic for the species.	finger.	meat juice.
Consistency	It is appreciated by pressing your	It is appreciated by	The examination is similar to the
	finger on the surface and on a	palpation and by the sound	dry or chilled meat.
	section made at the time of	of the hit with a tough	
	examination and by analyzing the	object.	
	fingerprint.		

The sensory analysis of beef

Characteristics	Dry and chilled meat	Frozen meat	Thawed meat
Smell	It is appreciated by direct smell at the	It is appreciated by	Examination is
	outer surface and at the surface of a	direct smell at the	done in the same
	fresh section, paying particular	outer surface.	way as the dry
	attention to deep layers near the bone.	In case of doubt, the	or chilled meat.
	Sample of boiling: The scent is made	boiling test and the	
	several times from the moment of	grilling sample are	
	heating up to boiling.	carried out as in the	
	Sample grilling: the odor is	case of chilled or	
	appreciated during the grilling.	frozen meat.	
	Both samples can be complemented by		
	research into the taste of meat pieces.		
Fat	Consistency is appreciated by friction	The color and color	Examination is
appearance	between fingers, color and smell both	uniformity is	done in the same
and	on the surface and in the deep layers.	appreciated on the	way as the dry
characteristics	It is appreciated if the odor is specific	outside.	or chilled meat.
	to the species.		

The sensory analysis of beef

Characteristics	Dry or chilled meat	Frozen meat	Thawed meat
Characteristics	The evaluation is made after the		Examination is
of the bone	longitudinal sectioning of the		done in the
marrow	tubular bones and the removal of		same way as the
	the marrow from the medullary		dry or chilled
	canal.		meat.
	The color, the consistency		
	(elasticity), the gloss, the degree		
	of filling of the medullary channel		
	and the adherence to the walls are		
	appreciated.		
Characteristics	Boil for 30 minutes and the broth		Examination is
of the broth	obtained is appreciated after		done in the
	sedimentation, smell transparency,		same way as the
	color, taste and appearance of fat.		dry or chilled
			meat.

The result of the organoleptic meat test indicates how it can be used, namely:

>Fresh meat is good for consumption and can be treated by preservation and processing in meat preparations.

➤ Relatively fresh meat should be consumed as soon as possible. It can not be treated by preservation or used in meat preparations.

>Altered meat is destroyed or used for technical purposes.

Appreciation of beef sanitation by sensory characteristics

Factors of	Fresh meat	Relatively fresh meat	Altered meat
appreciation			
Exterior	On the surface, the	The meat occasionally has a	The surface may be dry or wet
appearance	meat has a dry film.	dry film on the surface,	and sticky, often covered with
	The fat has normal	sometimes it is covered with	mold stains. Grease has a
	color, consistency and	a small amount of sticky	matte appearance and a gray
	taste typical of the	mucus. Fat has a matt	dirty color. Decreased
	species. The tendons	appearance and reduced	consistency. Odor and taste of
	are glossy, elastic and	consistency. The tendons are	rancid. The tendons are soft,
	strong. The joints are	somewhat softer, matte or	gray, damp and covered with
	smooth and glossy.	even gray. The joints are	mucus. The joints are
	Synovial fluid is clear.	covered with abundant	covered with abundant mucus.
		mucus. Synovial fluid is	Synovial fluid is cloudy.
		cloudy.	
Color	On the surface the	On the surface and in the	On the surface the color is gray
	meat is pink to red.	section the color is matte and	or greenish. The section is
	The section is glossy,	darker compared to fresh	damp and very sticky.
	slightly moist without	meat. The section is moist	Sometimes it is discolored,
	being sticky, of color	without being sticky. A filter	sometimes gray or greenish.
	characteristic of the	paper applied to the section	
	species and the	absorbs much moisture.	
	respective muscle	Muscle juice is cloudy.	
	region. Muscle juice is		
	hard to obtain and is		
	clear.		

Appreciation of beef sanitation by sensory characteristics

Factors of appreciation	Fresh meat	Relatively fresh meat	Altered meat
Consistency	The meat is fine and elastic. In section, it is compact. The fingerprint returns quickly and completely to the original form.	The meat is soft both on the surface and in the section. The traces that are formed by pressing your finger come back quite quickly and completely.	Both on the surface and in the section the traces that are formed at the fingerprint remain persistent.
Smell	Pleasant and characteristic of each species.	Slightly acid or mold. Sometimes a heavy scent of unrestrained meat feels on the surface. The smell of mold is missing in deep layers.	Smell of mold both on the surface and in the deep layers.
Bones marrow	Fully fills the medullary canal, is elastic, pearly white in color and normal consistency. The section is glossy.	Slightly cut off the edge of the bone. Softer and darker than the fresh marrow. The section is matte, sometimes gray.	It does not fill all the medullary channel. Much less consistency. Dark gray color. The periosteum dark color, often black.
Broth after boiling and sedimentation	Transparent, clear and pleasantly aromatic. On the surface, a compact layer or large fat islands separated with pleasant smell and taste.	Cloudy, tasteless, or even slightly rancid. On the surface, the fat separates as small drops, sometimes with a smell of rancid.	Dirty cloudy with flocks. Odor of mold. There are almost no drops of fat on the surface.

The physico-chemical methods for assessing beef quality

Determination of the pH of beef

Determination of pH shows the degree of freshness of the meat only if the slaughter of the animals was done under appropriate conditions.

Measurement of the pH value is done either by means of indicator paper, the error being + 0.5 pH units or with pH meter, the method error being + $0.01 \dots + 0.03$ pH units.

Depending on the freshness pH is:

- for fresh meat: 5,5 6,0
- for relatively fresh meat, we have: 6.0 6.7

- for altered meat, the values exceed the maximum permitted level for relatively fresh meat.

Depending on the thermal state pH is:

•for chilled meat: 5,8 - 6,2

- •for frozen meat: 6,2 6,4
- •for frozen meat: 6,2 6,4

The physico-chemical methods for assessing beef quality

Determination of total protein substances Determination of peroxidase Identification of hydrogen sulfide Determination of ammonia (NH₃) Determination of amino acid content of meat

Determination of carbohydrate in meat

Determination of water

Determination of fatty substances by extraction with organic solvents

Determination of bacterial activity

Food safety regulation

EU food safety policy targets the entire food chain. Its purpose is to guarantee: - the safety and nutritional value of food and feed; high standards in animal health and welfare and plant protection; - clear information on the origin, content, labeling and use of food.

Determination of total ash (ISO 936/1998) **Determination of nitrogen content** (ISO 937/1978) **Determination of moisture content (ISO 1442/1997)** Determination of total fat content (ISO 1443/1973) pH value (ISO 2917/1999) **Determination of chloride content** (ISO 1841-1/1946) **Determination of total phosphorus content (ISO 2294/1974)** Determination of the sensorial characteristics of frozen beef meat (ASTM E1871/2010, ASTM E1885-04/2004) **Codex Alimentarius Commission (CODEX);** World Organisation for Animal Health (OIE); **IPPC International Plant Protection Convention**

+/- of beef in human nutrition

Advantages of using meat in the diet:

✓ Meat has an important erythropoietic action due to its high content of amino acids, iron and hematopoietic vitamin;

✓ Meat has a composition similar to human muscles, and due to lysine-rich content, it plays a special role in the development of children;

 \checkmark The meat stimulates the activity of the central nervous system and improves the ability to work, intensifying metabolism being recommended in preventing and combating obesity.

Disadvantages of using meat in food:

✓ Meat is poor in Ca, so the Ca: P ratio is very low;

 \checkmark Meat is acidifiable due to the predominant composition of the anion P-, S-, Cl-, and the viscera is rich in nucleoproteins, whose metabolism results in uric acid. Used in large amounts raises the level of this metabolite in the blood favors its deposition into the tissues;

 \checkmark Meat contains cholesterol, its level being 100-300 mg% in the liver, 400 mg in the kidneys, reaching 3-3.5 g% in the brain.

Conventional versus organic

https://sancient.deviantart.com/art/Bull-fight-404237789

In the past two decades, the increase of organic beef consumption is in some measure driven by consumer perceptions that organic foods are more nutritious and healthy than non-organic foods.

According Srednicka-Tober et al. (2016), there were no systematic reviews comparing specifically the nutrient content of organic and conventionally meat.

Conventional versus organic

Organic cattle requirements

EU

(European Union)

European organic standards require cattle to be fed whole milk until at least 12 weeks of age and maximize the use of pasture throughout their lives (for cows as well as growing cattle) with a minimum of 60% of their dry matter intake from forage (European Commission, 2008).

http://eurlex.europa.eu/legalcontent/EN/TXT/?uri=celex%3A32008R0889

USDA

(United States Department of Agriculture)

Organic ruminant livestock—such as cattle, sheep, and goats—must have free access to certified organic pasture for the entire grazing season. This period is specific to the farm's geographic climate, but must be at least 120 days. Due to weather, season, or climate, the grazing season may or may not be continuous.

Organic ruminants' diets must contain at least 30 percent dry matter (on average) from certified organic pasture. Dry matter intake (DMI) is the amount of feed an animal consumes per day on a moisture-free basis. The rest of its diet must also be certified organic, including hay, grain, and other agricultural products.

https://www.ams.usda.gov/sites/default/files/media/Organic%20Livestock%20Requi rements.pdf

Characterization of conventional and organic beef

Specifications	Conventional	Organic
USDA Definition	None	Must be "Certified"
Hormone implant use	Likely	Prohibited
Therapeutic antibiotics	Likely	Prohibited
Subtherapeutic antibiotics	Likely	Prohibited
Chemical fertilizer use	Likely	Prohibited
Chemical pesticide use	Likely	Prohibited
Grazing life	>70% of life	>80% of life
Confinement	>30% of life	>20% of life
Fed meat-and-bone meal	Prohibited	Prohibited
Fed tallow	Allowed	Prohibited
Manure applied to land	Allowed	Mandated

http://www.meatscience.org/docs/default-source/publications-resources/rmc/2008/conventional-organic-natural-grass-fed-beef---keith-belk.pdf?sfvrsn=0

Composition of organic meat products

According to Średnicka-Tober Dominika et al., 2016. Composition differences between organic and conventional meat: a systematic literature review and meta-analysis. British Journal of Nutrition, 115: 994–1011.

Overall, the beef is:

 ✓ An excellent source of high biological value protein, vitamins and minerals

 ✓ A source of endogenous antioxidants and other bioactive substances

✓A delicacy if is cooked by a "master chef"

- 1. Banu C., Vizireanu Camelia, Ianitchi Daniela, Sahleanu E., 2011, LIVING FOOD DEAD FOOD (Alimente vii Alimente nevii) GOOD FOOD BAD FOOD (Alimente bune Alimente rele). Asab Publishing House, Bucharest.
- 2. Bernard C., Cassar-Malek I., Le Cunff M., Dubroeucq H., Renard G., Hpcquette J.F, 2007, New indicators of beef sensory quality revealed by expression of specific genes. J. Agric. Food Chem., 55 (13), 5229–5237.
- 3. Dervilly-Pinel G. et al., 2017, Micropollutants and chemical residues in organic and conventional meat. Food Chemistry 232, 218–228.
- 4. European Commission, 2008. Commission Regulation (EC) No 889/2008 of 5 September 2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control. In: Commission Regulation (EC). No 889/2008 of 5 September 2008. Available online:
- 5. Ianițchi D., Nicolae C.G., Drăgătoiu D., 2011, Advanced techniques for assessing quality and meat products, Ed. Valahia University Press, Targoviste, 47–69, 83–87.
- 6. Nicolae C.G., Bahaciu G.V., Elia E., Dumitrache F., Marin P.M., Pogurschi E., Bădulescu L., 2016, A review of the quality standards for frozen beef meat and fish. Scientific Papers. Series D. Animal Science, Vol. LIX, ISSN 2285-5750, 302–307.
- Średnicka-Tober D., M. Barański, C. Seal, R. Sanderson, C. Benbrook, H. Steinshamn, J. Gromadzka-Ostrowska, E. Rembiałkowska, Kr. Skwarło-Sońta, M. Eyre, G. Cozzi, M. Krogh Larsen, T. Jordon, U. Niggli, T. Sakowski, P. C. Calder, G. C. Burdge, S. Sotiraki, S. Stefanakis, H. Yolcu, S. Stergiadis, E. Chatzidimitriou, G. Butler, G. Stewart and C. Leifert, 2016. Composition differences between organic and conventional meat: a systematic literature review and meta-analysis. British J. Nutrition, 115: 994–1011.
- 8. Standards Association of Romania (ASRO), online at http://www.asro.ro/
- 9. Stănescu V., 1998, Igiena și controlul alimentelor, "România de Mâine" Publishing House, Bucharest.
- 10.World Organisation for Animal Health, online at http://www.oie.int/
- 11.http://cleverfood.com.vn/thit-nac-vai-bo-my-5870029.html
- 12.http://halalfoods.ro/en/Beef/
- 13. http://www.meatscience.org/docs/default-source/publications-resources/rmc/2008/conventional-organic-naturalgrass-fed-beef---keith-belk.pdf?sfvrsn=0
- 14. http://www.romagnola.co.za/p19/the-breed/the-carcass-of-the-romagnola-cattle-breed-explained.html
- 15.https://chopp.vn/products/recsGHTMbAH7fLvsS
- 16.https://sancient.deviantart.com/art/Bull-fight-404237789
- 17. https://www.ams.usda.gov/sites/default/files/media/Organic%20Livestock%20Requirements.pdf
- 18.https://www.healthline.com/nutrition/foods/beef
- 19.https://www.spraytech.co.za/images/Instruments/Measuring/phmeat.html
- 20.www.britannica.com/topic/beef
- 21.www.mega-image.ro
- All the online link were accessed in January February, 2018.

Q & A

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.